Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Math Biol ; 86(2): 28, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36637496

RESUMO

Reactions involving three or more reactants, called higher-molecular reactions, play an important role in mathematical modelling in systems and synthetic biology. In particular, such reactions underpin a variety of important bio-dynamical phenomena, such as multi-stability/multi-modality, oscillations, bifurcations, and noise-induced effects. However, as opposed to reactions involving at most two reactants, called bi-molecular reactions, higher-molecular reactions are biochemically improbable. To bridge the gap, in this paper we put forward an algorithm for systematically approximating arbitrary higher-molecular reactions with bi-molecular ones, while preserving the underlying stochastic dynamics. Properties of the algorithm and convergence are established via singular perturbation theory. The algorithm is applied to a variety of higher-molecular biochemical networks, and is shown to play an important role in synthetic biology.


Assuntos
Algoritmos , Modelos Biológicos , Processos Estocásticos , Simulação por Computador
2.
J R Soc Interface ; 18(177): 20200985, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33849334

RESUMO

One of the main objectives of synthetic biology is the development of molecular controllers that can manipulate the dynamics of a given biochemical network that is at most partially known. When integrated into smaller compartments, such as living or synthetic cells, controllers have to be calibrated to factor in the intrinsic noise. In this context, biochemical controllers put forward in the literature have focused on manipulating the mean (first moment) and reducing the variance (second moment) of the target molecular species. However, many critical biochemical processes are realized via higher-order moments, particularly the number and configuration of the probability distribution modes (maxima). To bridge the gap, we put forward the stochastic morpher controller that can, under suitable timescale separations, morph the probability distribution of the target molecular species into a predefined form. The morphing can be performed at a lower-resolution, allowing one to achieve desired multi-modality/multi-stability, and at a higher-resolution, allowing one to achieve arbitrary probability distributions. Properties of the controller, such as robustness and convergence, are rigorously established, and demonstrated on various examples. Also proposed is a blueprint for an experimental implementation of stochastic morpher.


Assuntos
Modelos Biológicos , Biologia Sintética , Algoritmos , Probabilidade , Processos Estocásticos
3.
J R Soc Interface ; 15(144)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29997258

RESUMO

Synthetic biology is a growing interdisciplinary field, with far-reaching applications, which aims to design biochemical systems that behave in a desired manner. With the advancement in nucleic-acid-based technology in general, and strand-displacement DNA computing in particular, a large class of abstract biochemical networks may be physically realized using nucleic acids. Methods for systematic design of the abstract systems with prescribed behaviours have been predominantly developed at the (less-detailed) deterministic level. However, stochastic effects, neglected at the deterministic level, are increasingly found to play an important role in biochemistry. In such circumstances, methods for controlling the intrinsic noise in the system are necessary for a successful network design at the (more-detailed) stochastic level. To bridge the gap, the noise-control algorithm for designing biochemical networks is developed in this paper. The algorithm structurally modifies any given reaction network under mass-action kinetics, in such a way that (i) controllable state-dependent noise is introduced into the stochastic dynamics, while (ii) the deterministic dynamics are preserved. The capabilities of the algorithm are demonstrated on a production-decay reaction system, and on an exotic system displaying bistability. For the production-decay system, it is shown that the algorithm may be used to redesign the network to achieve noise-induced multistability. For the exotic system, the algorithm is used to redesign the network to control the stochastic switching, and achieve noise-induced oscillations.


Assuntos
Algoritmos , Razão Sinal-Ruído , Biologia Sintética , Computadores Moleculares , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...